Nonparametric variance function estimation with missing data

نویسندگان

  • Ana Pérez González
  • J. M. Vilar-Fernández
  • Wenceslao González-Manteiga
چکیده

In this paper a fixed design regression model where the errors follow a strictly stationary process is considered. In this model the conditional mean function and the conditional variance function are unknown curves. Correlated errors when observations are missing in the response variable are assumed. Four nonparametric estimators of the conditional variance function based on local polynomial fitting are proposed. Expressions of the asymptotic bias and variance of these estimators are obtained. A simulation study illustrates the behavior of the proposed estimators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imputation methods for quantile estimation under missing at random

Imputation is frequently used to handle missing data for which multiple imputation is a popular technique. We propose a fractional hot deck imputation which produces a valid variance estimator for quantiles. In the proposed method, the imputed values are chosen from the set of respondents and are assigned with proper fractional weights that use a density function for the working model. In addit...

متن کامل

Parametric and Nonparametric Regression with Missing X’s—A Review

This paper gives a detailed overview of the problem of missing data in parametric and nonparametric regression. Theoretical basics, properties as well as simulation results may help the reader to get familiar with the common problem of incomplete data sets. Of course, not all occurences can be discussed so this paper could be seen as an introduction to missing data within regression analysis an...

متن کامل

A semi-parametric approach to fractional imputation for nonignorable missing data

Parameter estimation with nonignorable missing data is a challenging problem in statistics. Fully parametric approach for joint modeling of the response model and the population model can produce results that are very sensitive against the failure of the assumed model. We consider a more robust approach of modeling by describing the model for the nonresponding part as a exponential tilting of t...

متن کامل

Variable selection for semiparametric mixed models in longitudinal studies.

We propose a double-penalized likelihood approach for simultaneous model selection and estimation in semiparametric mixed models for longitudinal data. Two types of penalties are jointly imposed on the ordinary log-likelihood: the roughness penalty on the nonparametric baseline function and a nonconcave shrinkage penalty on linear coefficients to achieve model sparsity. Compared to existing est...

متن کامل

Nonparametric estimation of distribution and density functions in presence of missing data: an IFS approach

In this paper we consider a class of nonparametric estimators of a distribution function F , with compact support, based on the theory of IFSs. The estimator of F is tought as the fixed point of a contractive operator T defined in terms of a vector of parameters p and a family of affine maps W which can be both depend of the sample (X1, X2, . . . , Xn). Given W, the problem consists in finding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 101  شماره 

صفحات  -

تاریخ انتشار 2010